Краткие сообщения ОНЯИ № 6[57]-92 УДК 539.165.3 + 539.166.3

ON BETA DECAY OF THE ISOTOPE 183 TI PRODUCED BY THE 147 Sm + 40 Ca REACTION

A. Bouldjedri¹, R.Béraud¹, R.Duffait¹, A.Astier¹, A.Emsallem¹, N.Redon¹, A.Barnéoud², J.Blachot², J.Genevey², A.Gizon², J.Inchaouh², Yu.A.Lazarev, Yu.Ts.Oganessian, I.V.Shirokovsky, I.N.Izosimov³

Beta decay of the ground state of a very neutron-deficient isotope 183 Tl was investigated. The 183 Tl was produced via the 147 Sm(40 Ca, p3n) reaction on the SARA cyclotron at ISN, Grenoble. Gamma lines resulting from the deexcitation of 183 Hg levels were observed and the half-life of 183 Tl was determined to be 5 ± 2 s. The known isotope 184 Tl was also produced and clearly identified in these experiments.

The investigations have been carried out in the framework of the JINR — IN2P3 collaboration.

О бета-распаде изотопа 183 Tl, образующегося в реакции 147 Sm + 40 Ca

А.Боулджедри и др.

На циклотроне SARA в Гренобле исследовался β -распад основного состояния очень нейтронодефицитного изотопа ¹⁸³Tl, для получения которого использовалась ядерная реакция ¹⁴⁷Sm(⁴⁰Ca, *p3n*). Наблюдались *у*-линии, соответствующие девозбуждению уровней ¹⁸³Hg. Период полураспада ¹⁸³Tl определен равным 5±2 с. В экспериментах был получен и идентифицирован также известный изотоп ¹⁸⁴Tl.

Работа выполнена в рамках соглашения между ОИЯИ и Национальным институтом физики ядра и физики частиц, Франция.

1. Introduction

During the last two decades, extensive experiments were performed to study very neutron-deficient nuclides located near the closed Z = 82 shell (see, e.g., Refs. [1-12]). These experiments aimed at identifying new

¹Institut de Physique Nucléaire de Lyon, IN2P3-CNRS et Université Claude Bernard, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

²Institut des Sciences Nucléaires, IN2P3-CNRS et Université Joseph Fourier,

⁵³ Avenue des Martyrs, F-38026 Grenoble Cedex, France

³V.G. Khlopin Radium Institute, 1 Roentgen St., 197022 St. Petersburg, Russia

isotopes, searching for the ground-state proton radioactivity and probing the limits of stability of proton-rich nuclei, studying peculiarities of α -decay in this region of nuclei, characterizing nuclear isomerism which appears to be a widespread phenomenon here, and at exploring also a variety of other aspects of nuclear structure and decay.

Our interest in studying the above nuclei is motivated mainly by findings of the recent experiments performed at Dubna where a new region of $EC(\beta^+)$ -delayed fission has been revealed [13–15]. In fact, the phenomenon of $EC(\beta^+)$ -delayed fission was shown to occur far outside its traditional actinide nest: it was discovered for the ultra neutron-deficient nuclei of mercury and lead. Here, a prime example of $EC(\beta^+)$ -delayed fission is the fission activity of $T_{1/2} = 0.97^{+0.09}_{-0.08}$ s repeatedly detected in the ¹⁴⁴Sm + ⁴⁰Ca reaction and assigned to the ¹⁸⁰Tl $\frac{EC(\beta^+)}{0.97 \text{ s}}$ ¹⁸⁰Hg decay chain [13–15]. Another striking case of $EC(\beta^+)$ -delayed fission, with $T_{1/2} \cong 0.3$ s, has been revealed in the ^{151,153}Eu + ⁴⁰Ca and ¹⁴⁷Sm + ⁴⁵Sc reactions and attributed to the decay chain ¹⁸⁸Bi $\frac{EC(\beta^+)}{0.3 \text{ s}}$ ¹⁸⁸Pb [13–15]. A quantitative analysis of the results on $EC(\beta^+)$ -delayed fission will give a unique information on fission barrier heights of the cold nuclei lying extremely far off the β -stability line [13,16]. This information cannot be obtained by any traditional means. However, for this analysis it is very

important to perform detailed experimental studies on the radioactive properties and structure of nuclei in this region, especially on their β decay characteristics [17].

At present, the lightest identified even-A isotope of thallium is ¹⁸²Tl $(T_{1/2} \approx 3 \text{ s})$ known to undergo mainly $EC(\beta^+)$ decay [11,12]. For odd-A thallium isotopes, a systematic occurrence of the $1/2^+$ ground state and of a low-lying $9/2^-$ isomeric state was observed [3,7]. The first identification of the lightest odd-A thallium isotopes, ¹⁷⁹Tl, ¹⁸¹Tl and ¹⁸³Tl, was based on α decay of an $9/2^-$ isomeric state [4,6,18]. The ground states of ¹⁷⁹Tl and ¹⁸¹Tl have also been identified [6,12,18].

In this paper, we report on our experimental results concerning β decay of ¹⁸³Tl, which, according to systematics [3,7,18], is expected to be the main ground-state decay mode of this nucleus. The β decay of ¹⁸³Tl could be identified since the low-lying levels in ¹⁸³Hg have already been known from α -decay studies of ¹⁸⁷Pb [5], where two excited states, at 67 keV and at 275 keV, were observed, with probable spins and parities being (3/2⁻ or 5/2⁻) and (1/2⁻ or 3/2⁻), respectively. Then β decay of a 1/2⁺ state of ¹⁸³Tl can feed at least the higher level, thus providing the three γ transitions: 67 keV, 208 keV, and 275 keV.

33

2. Experimental

Our experiments were performed at the SARA cyclotron in Grenoble. A self-supporting metallic Sm target (2.1 mg/cm²) containing 96.5% of ¹⁴⁷Sm was irradiated by a ⁴⁰Ca beam with a typical intensity of $2 \cdot 10^{11}$ pps. Reaction products recoiling out of the target were stopped in 1.4-bar pressurized helium and transported on NaCl (or PbCl₂) aerosols through a 1-mm diameter 12-m long capillary to a programmable tape-transport system used to carry the collected activity to a low-background counting position. The tape-transport system allowed us to make also a suitable selection of collection and counting time intervals. Measurements including γ multianalysis (counting periods 8×1 s), γ -X and γ - γ coincidences were performed. Further details concerning the experimental setup are given in Ref. [19].

Two beam energies were used in the present work, 196 MeV and 210 MeV at the middle of the target. We note that prior to our work, Toth et al. [8,9] employed the ¹⁴⁷Sm + ⁴⁰Ca reaction to produce very proton-rich isotopes of lead. In their experiments, the α activity of ^{183m}Tl was observed at bombarding energies of 194 MeV and 212 MeV, while there was no evidence for its production at 222 MeV. Thus, the beam energies used in the present work should provide an optimum yield of ¹⁸³Tl and ¹⁸⁴Tl via the (⁴⁰Ca,p3n) and (⁴⁰Ca,p2n) channels. This energy range selection was corroborated also by our statistical-model calculations made with the ALICE code [20].

3. Results and Discussion

*At 196 MeV

The γ spectra measured at the bombarding energy of 196 MeV give a firm evidence of the ¹⁸⁴Tl production. Two γ transitions in ¹⁸⁴Hg, 286 keV and 367 keV, known from in-beam spectroscopy studies [21] as well as from β -decay studies of ¹⁸⁴Tl [22] are clearly observed here (see Fig.1). An analysis of Hg $KX-\gamma$ coincidence data supports the assignment of these γ lines to $EC(\beta^+)$ -decay of ¹⁸⁴Tl. Besides, an analysis of the time distribution of Hg KX-rays gives a half-life value of 10.0 \pm 0.7 s, in a good agreement with $T_{1/2} = 11 \pm 1$ s known for ¹⁸⁴Tl [22,23]; this means also that, at the given bombarding energy, the yield of lighter (and presumably shorter-living) isotopes of Tl is low compared to that of ¹⁸⁴Tl. As the γ lines of 208 keV and, probably, 275 keV are seen in the lower spectrum on Fig.1, it indicates a production of ¹⁸³Tl; however, no clear coincidences between Hg KX-rays and these γ -events were obtained at this bombarding energy.

Fig.1. Comparison of the γ spectra measured at the ⁴⁰Ca beam energies of 210 MeV (upper spectrum) and 196 MeV (lower spectrum)

*At 210 MeV

As it could be expected, here the relative intensity of the 208 keV and 275 keV γ -lines has increased compared to that of the 367 keV γ -line of

Fig.2. Decay curves of the $K_{\alpha 1}$ -Hg X-rays and of the 208 keV γ -rays measured at the ⁴⁰Ca beam energy of 210 MeV

¹⁸⁴Tl (see Fig.1). A time analysis of the 208 keV γ -line and that of Hg KXrays gives half-life values of 5 ± 2 s and 6.3 ± 1.5 s, respectively (Fig.2). These values are in agreement with the «gross» theory predictions of Taka-

.

hashi et al. [24] for ¹⁸³Tl and also with the $T_{1/2}$ value of 6.9 ± 1.4 s obtained for ¹⁸³Tl in a parallel investigation [12] performed by using a mass-separator facility and 1 GeV proton-induced spallation reactions on uranium and thorium targets.

To conclude, the ¹⁸³Tl isotope with $T_{1/2} = 5 \pm 2$ s was clearly produced in the ${}^{147}Sm({}^{40}Ca, p3n)$ reaction and characterized via measuring its ground-state β decay. Yet the isotope of principal interest for us is the still unknown ¹⁸⁰Tl — the precursor of the $EC(\beta^+)$ -delayed fission of ¹⁸⁰Hg — which can be produced by the ¹⁴⁴Sm(⁴⁰Ca, p3n) reaction. The sensitivity of the experiment to identify ¹⁸⁰Tl can be essentially improved by involving the detection of α particles and $\alpha - X$ coincidences. Whereas for ¹⁸²Tl and ¹⁸⁴TI the α -decay branches are quite small, $b_{\alpha} < 5\%$ [11,12] and $b_{\alpha} \approx 2\%$ [23], respectively, ¹⁸⁰Tl is expected to show comparable branches for α and $EC(\beta^+)$ decays. Again, to increase the selectivity of the ¹⁸⁰Tl experiment, if is highly desirable to use a mass-separation technique, e.g., the IGISOL technique [25]. However, when applying this technique to heavy-ion-induced fusion-evaporation reactions, a serious difficulty arises due to the socalled «plasma effect» which causes a dramatic reduction of the efficiency [26]. A way out of this difficult situation can be provided by taking advantage of a huge difference between the angular distribution of beam particles and that of evaporation residues (EVRs) after passing a moderately thick target of a few mg/cm^2 . This «shadow» method with a beam stop previously used by Sprouse et al. [27] for laser spectroscopy studies was applied in our recent IGISOL experiments at SARA with the 154 Sm + 40 Ar (217 MeV) reaction [28]. The beam stop allowed us to catch more than 96% of the ⁴⁰Ar particles whereas some 40% of EVRs missed the beam stop by virtue of their transverse momenta and could enter the He pressurized IGISOL chamber separated from the target/beam-stop chamber by a thin Havar window. In this way it was possible to decrease the «plasma effect» significantly and thus mass-separate the Hg-Au-Pt isotopes in the 188-189-190 mass chains. It is this combination of the «shadow» method with the IGISOL technique that shall be applied in our forthcoming studies of ¹⁸⁰Tl.

References

- 1. Toth K.S. In: Future Directions in Studies of Nuclei Far From Stability (J.H.Hamilton et al., eds.). Amsterdam: North-Holland, 1980, p.71.
- Toth K.S. et al. In: Proc. Int. School-Seminar on Heavy Ion Physics, Dubna, October 3—12, 1989. JINR Report D7-90-142, Dubna, 1990, p.412.

- 3. Schmidt A.G. et al. Phys.Lett., 1977, v.66B, p.133.
- 4. Schrewe U.J. et al. Phys.Lett., 1980, v.91B, p.46.
- 5. Misaelides P. et al. Z.Phys., 1981, v.A301, p.199.
- 6. Schneider J.R.H. et al. Z.Phys., 1983, v.A312, p.21.
- 7. Coenen E. et al. Phys.Rev.Lett., 1985, v.54, p.1783.
- 8. Toth K.S. et al. Phys.Rev., 1987, v.C35, p.2330.
- 9. Toth K.S., Moltz D.M., Robertson J.D. Phys.Rev., 1989, v.C39, p.1150.
- 10. Sellin P.J. et al. Z.Phys., 1991, v.A338, p.245.
- 11. Bouldjedri A. et al. Z.Phys., 1991, v.A339, p.311.
- 12. Bolshakov V.A. et al. In: Proc. Int. Conf. on Exotic Nuclei, Foros, Crimea, USSR, October 1—5, 1991. Singapore: World Scientific, in press.
- 13. Lazarev Yu.A. et al. Europhys.Lett., 1987, v.4, p.893.
- Lazarev Yu.A. et al. In: Proc. Int. School-Seminar on Heavy Ion Physics, Dubna, October 3—12, 1989. JINR Report D7-90-142, Dubna, 1990, p.208.
- 15. Lazarev Yu.A. et al. In: Proc. Int. Conf. NFFS-6 + AMCO-9, Bernkastel-Kues, Germany, July 19—24, 1992. Bristol: IOP, in press.
- 16. Oganessian Yu.Ts., Lazarev Yu.A. In: Treatise on Heavy-Ion Science (D.A. Bromley, ed.). N.Y.: Plenum Press, 1985, v.4, pp.1—251.
- 17. Béraud R. et al. In: Heavy Ion Physics, Scientific Report 1989-1990, JINR, E7-91-75, Dubna, 1991, p.64.
- 18. Schneider J.R.H. Thesis. Report GSI-84-3, Darmstadt, 1984.
- 19. Plantier A. et al. Nucl. Instr. Meth. Phys. Res., 1987, v.B26, p.314.
- Blann M. Overlaid ALICE, A Statistical Model Computer Code Including Fission and Pre-Equilibrum Models. U.S. ERDA Report No.COO-3494-29, 1976.
- 21. Rud N. et al. Phys. Rev.Lett., 1973, v.31, p.1421.
- 22. Cole J.D. et al. Phys.Rev.Lett., 1976, v.37, p.1185.
- 23. Toth K.S. et al. Phys.Lett., 1976, v.63B, p.150.
- 24. Takahashi K., Yamada M., Kondoh T. At. Data Nucl. Data Tables, 1973, v.12, p.101.
- 25. Astier A. et al. Nucl. Instr. Meth. Phys. Res., 1992, v.B70, p.233.
- 26. Äystő J. Nucl. Instr. Meth. Phys. Res., 1989, v.B40/41, p.489.
- 27. Sprouse G.D. et al. Phys.Rev.Lett., 1989, v.63, p.1463.
- 28. Astier A. et al. In: Book of Abstracts of the 4th Workshop on Ion Guide Based Isotope Separation, Rydzyna, Poland, September 13—16, 1992.